0=-16x^2+75

Simple and best practice solution for 0=-16x^2+75 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 0=-16x^2+75 equation:



0=-16x^2+75
We move all terms to the left:
0-(-16x^2+75)=0
We add all the numbers together, and all the variables
-(-16x^2+75)=0
We get rid of parentheses
16x^2-75=0
a = 16; b = 0; c = -75;
Δ = b2-4ac
Δ = 02-4·16·(-75)
Δ = 4800
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{4800}=\sqrt{1600*3}=\sqrt{1600}*\sqrt{3}=40\sqrt{3}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-40\sqrt{3}}{2*16}=\frac{0-40\sqrt{3}}{32} =-\frac{40\sqrt{3}}{32} =-\frac{5\sqrt{3}}{4} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+40\sqrt{3}}{2*16}=\frac{0+40\sqrt{3}}{32} =\frac{40\sqrt{3}}{32} =\frac{5\sqrt{3}}{4} $

See similar equations:

| -11-y/3=-4 | | 20k+100=10k+10 | | 2(v-40)=72 | | 9(a-6)=4(a+9) | | a-40=9.1-20 | | 4y+y=68+y | | -29=k/9+-38 | | O.05x-0.08+x=0.97 | | 30(-8x/5+1/6)=30(-5x/3) | | 3/4=j-1.2 | | n=4/7=3 | | 4x-6=-12x | | -8u-32=7(u+4) | | 5x^2-5-245=0 | | y+y+y-2=y+4 | | 192=3y/2 | | -2.4x–10.25=1.75 | | (8x)(6x)=0 | | 14=-p-1 | | 18+2x  =12 | | 2x-10=4x-10-2x | | p^2=50 | | 5x-4/2=8 | | 162-7x=29x+22 | | c2=24 | | 2p-4=2p-15 | | 2(x+1)+×=56 | | f-11/9=5 | | 8w-36=60 | | 22-4c=18 | | 2(2y-3)=2y+12 | | 3(y/2-9/2)+5y=19 |

Equations solver categories